
IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 5, May 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.65124 645

A Review: Parallel Implementation of Shortest

path Algorithm on GPGPU

Avadhoot K. Katkar
1
, Dr. D. B. Kulkarni

2

Department of Information Technology, Walchand College of Engineering, Sangli, MS, India1,2

Abstract: To find out the shortest paths from a single source to all other vertices’s is a common problem in graph

analysis. The Bellman¬Ford’s algorithm is solves such a single¬source shortestpath (SSSP) problem and better

applies to beparallelized for many¬core architectures. TheSequential Bellman-Ford Algorithm is that it very time

consuming for large data set & it's time complexity is O(ve). Therefore, frontier based Bellman¬Ford's algorithm
significantly reduces the number of relaxation operation, number of iterations and time required for search task. This

paper presents a parallel implementation of the Bellman¬Ford algorithm based on frontier propagation. General

Purpose Graphics Processing Units (GPGPU) based parallel computing is the best alternate way to speed up the search

task. This paper gives detailed information about frontier based Bellman¬Ford's algorithm to solve optimization

problem & improve the performance of GPU based computing.

Keywords: BellmanFord, SSSP, GPGPU, Parallel graph algorithms.

I. INTRODUCTION

Single source shortest path problem finds application in large domains of the scientific and real world. Common
applications of these algorithms are in network routing, VLSI chip design, robotics and transportation,

artificial intelligence, social networks, data mining they are also used for directions between physical locations like in

google maps. All of these applications generally involve positive weights but some applications are there

weights can be negative. Currency exchange arbitrage and some other areas, edge represents something

else than the distance between two entities. In such application BellmanFord algorithm [2] can be used. BellmanFord

operates on all vertices's independently. Each vertex maintains its distance to the source. on each

 iteration, a vertex checks each adjacent vertex, updating its own distance to the source if it finds any shortest

path. This operation is repeated until the distances converge. BellmanFord algorithm is applicable on

graphs with negative weights and can also detect negative cycles where the majority of algorithms fail (e.g

Dijkstra's algorithm). BellmanFord's is also used in power allocation in wireless sensor networks,

systems biology and regenerative braking energy for the railway vehicle.

The algorithm requires many iterations and each iteration is based on the previouslycomputed results so

it is well suitable for parallelization. Recently several packages have been developed for processing large

graphs on parallel architectures such as parallel Boost graph library, Pregel & Pegasus. The proposed solution in the

paper for GPGPU[3]. Therefore, GPGPU based parallel computing is the best alternate way to speed up the search task.

Experimental results have been conducted on graphs of different size to compare the proposed approach with

the most representative sequential and parallel implementations for solving the SSSP problem. The time

complexity is O(ve) where v=vertices's & e= edges.

II. LITERATURE REVIEW

BellmanFord was introduced by Richard Bellman and Lester Ford Jr. in 1958. Since then several modifications and
improvements were made to this algorithm.

F. Busato and N. Bombieri [1] has presented a parallel implementation of the BellmanFord algorithm

based on frontier propagation which is different from all other approaches in the literature. The idea behind is

that it uses a frontier data structure in which all and only active nodes are processed in parallel. The parallel processing

of active nodes does preserve the semantics of the algorithm.

P. J. Martine et. al. [4] has proposed different CUDA solutions for the SSSP problem by Considering

adjacency lists and matrices. Probably, the most wellknown algorithm solving this problem for the case of

graphs with nonnegative edges was given by Dijkstra. Author's, has solved the problem by using Dijkstra’s

algorithm adjacency lists of a graph is made up of three arrays i.e vertices's, edges and weights. In the case of

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 5, May 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.65124 646

adjacency lists,it is difficult to conceive a method to allow threads to collaborate when reading from global

memory.

On the opposite, when adjacency matrices are used, threads must visit every element of each column or

row, and so, threads can cooperate to bring elements of arrays to shared memory.

H. OrtegaArranz et. al. [5] has solved SSSP problem by using Dijkstra's algorithm. The complexity

time of this algorithm is O(v2). In this Dijkstra’s approach it parallelizes the internal operations of the

sequential Dijkstra algorithm. The idea behind is that to parallelization of a single sequential Dijkstra

algorithm resides in the inherent parallelism of its loops. For each iteration of Dijkstra’s algorithm, the
outer loop selects a node to compute new distance labels. Inside this loop, the algorithm relaxes its outgoing

edges in order to update the old distance labels, that is the inner loop. Parallelizing the inner loop implies to traverse

simultaneously the outgoing edges of the frontier node.

A. Davidson et al. [6] have proposed three different work efficient solution to solve SSSP problem:

Workfront Sweep, NearFar Pile, and Bucketing. Each method has a different approach. By using Workfront

Sweep implements queue based BellmanFord's algorithm. The main advantage of this method is that it

reduces redundant work due to duplicate vertices's during the frontier propagation. NearFar Pile method in which

splits the work queue of vertices's into two sets known as one is Near Set with distances less than i∆ to be processed

next, and second with distance outside that range i.e Far Pile, differed for later processing. Where as incremental

weight is denoted as Delta (∆). First go with the near set. In which traverse all edges from the vertices's in the near set

and split the resulting vertices's that have been updated into two piles. It will append elements outside of our range to
the end of the far pile, and begin the next iteration only processing the near set, after that check the far pile for valid

elements outside of our range to the end of the far pile, and begin the next iteration only processing the near pile. Once

run out of elements to process in the near set, then check the far pile for valid elements, compact all duplicates, and

run another split with an updated range ((i+1)).

In all ∆ cases, the split primitives can be performed quite cheaply with a simple scan and modified compaction

routine. The main thing of this method’s efficiency is that in many cases, unprocessed work in the Far Pile can

be discarded as closer vertices's are processed, therefore minimizing the number of times we must touch data

in the Far Pile. At the time of performing the split we merely append data to the end of the pile, requiring no extra data

movement. Thus the Far Pile data is only touched when it will run out of work queue items. There are two costs to

adding this functionality. First they are reducing the amount of available parallelism within the work queue.
Second, they add the overhead of a split on every iteration. Bucketing method used to implement the

Deltastepping algorithm. But the Deltastepping algorithm is not supported for SIMD architecture because

it requires dynamic data structures for buckets. Bucketing method is slower than other two methods.

K. Kelley and T. Schardl [8] has proposed parallel Gabow's scaling algorithm [9]. The proposed algorithm performs

well in practice on random graphs, outperforming a simple Dijkstra implementation on multicore CPU's.

J. Crobak et al. [9] has presented a multi threaded implementation of Thorup’s algorithm for

undirected graphs to solve SSSP problem. Thorup’s algorithm is naturally suited for multi threaded

machines since many computations can share a data structure within the same process.

Table1 shows that the time complexity of each algorithm.

Algorithm Time Complexity

 Dijkstra O(v2)

Bellman-Ford O(ve)

Table1: time complexity SSSP algorithms. v represents number of vertices's and e represents number of edges.

II. COMPUTATIONAL RESULTS

In paper [1], Author has used SSSP as a combinatorial optimization problem. The objective of SSSP is to find out the

shortest path starting from single source and visit all the vertices's in the graph such that the distance should be

minimized. Author's experimented their results with different dataset likes 1000EWD, rome99, 10000EWD, NYC. All
the experiment conducted on PC with RAM 8GB, NVIDIA GeForce GTX 730 device, which has 384 CUDA Cores,

Compute capability 3.5, Intel i7 Core Processor.

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 5, May 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.65124 647

Table 2 shows result analysis of frontier propagation approaches of SSSP problem.

 Dataset Number of Vertices Number of Edges Frontier propagation

1000EWD 1K 16K 0.0004 s

Rome99 3K 8K 0.004s

10000EWD 10K 1.2M 0.003 s

NYC 2.64M 7.33M 0.3476 s

Table 2. Performance of frontier propagation approache, time measured in terms of seconds (s) From Table

2. Author have calculated approximation values and analysed its efficiency with different approaches like WorkFront

Sweep, NearFar Pile and Frontier propagation. i.e is shown in the Table 3. However, large number of iteration

required to reach optimal solutions for large datasets. It can be obtained with minimum number of

iteration with parallelization. Therefore, shortest path would get in the reasonable amount of time. Now a day’s

SSSP can be applied to a large number of data instances than used in this paper.

Table 3. Performance comparisons of different Approaches, time measured in terms of second (s).

Dataset Number of

Vertices

Number of

Edges

Work-Front Sweep/

Near-Far Pile

Frontier

propagation

asia.osm 12.0M 25.4M 12.7 s 0.0002 s

msdoor 415K 20.6M 0.206 s 0.0045 s

usa-road-d.cal 1.9M 4.7M 4.6 s 0.0031 s

Circuit5M_dc 3.5M 19.2M 0.240 s 0.3476 s

The graphical representation of table 3 is shown in following figure 1.

Fig 1. analysis of different approaches of SSSP problem.

III. CONCLUSION

This study reveals the effectiveness of proposed algorithm over as mentioned in literature solutions for

solving the SSSP problem. For combinatorial optimization problems such as SSSP, many of the sequential approaches

have shown the ability to obtain good results. Recently, many researchers build parallel approaches to gain more

improvement in obtaining solutions over sequential approaches in order to handle large scale graphs. Based on

experimental results of the above papers, GPUbased computing provides highquality results than other parallel

architectures. Parallel implementation of frontier based BellmanFord's Algorithm gives better result on GPU

platform. Experimental results will be conducting on graphs of different size to compare the proposed approach
with the most representative sequential and parallel implementations for solving the SSSP problem.

REFERENCES

[1] S. F. Busato and N. Bombieri, “An Efficient implementation of the Bellman-Ford Algorithm for Kepler GPU Architectures,” vol. 27,

no. 8, pp. 2222–2233, 2016.

[2] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms. Cambridge, MA,USA: MIT Press, 2009.

[3] S. Che, M. Boyer, J. Meng, D. Tarjan, J.W. Sheaffer, and K.Skadron, “A Performance Study of General-Purpose Applications on Graphics

Processors Using Cuda,” J. Parallel Distributed Computing, vol. 68, no. 10, pp.1370-1380, 2008.

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 5, May 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.65124 648

[4] P. J. Martin, R. Torres, and A. Gavilanes, “CUDA solutions for the SSSP problem,” in Proc. 9th Int. Conf. Comput. Sci.: Part I, 2009, pp. 904–

913.

[5] H. OrtegaArranz, Y. Torres, D. Llanos, and A.GonzalezEscribano, “A new GPUbased approach

to the shortest path problem,” in Proc. Int. Conf.High Perform. Comput. Simul. 2013, pp. 505–511.

[6] A. Davidson, S. Baxter, M. Garland, and J. Owens,“Work- efficient parallel GPU methods for Single-source shortest paths,” in Proc. IEEE

28th Int. Parallel Distrib. Process. Symp. 2014, pp. 349–359.

[7] P. Harish and P. Narayanan, “Accelerating large graph algorithms on the GPU using cuda,” in Proc.14th Int. Conf. High Perform. Comput.,

2007, pp.197–208.

[8] K. Kelley and T. B. Schardl, “Parallel single-source shortest paths,” MIT computer science and artificial intelligence laboratory, internal report,

2010.

[9] J. R. Crobak, J. W. Berry, K. Madduri, and D.A. Bader, “Advanced shortest paths algorithms on a massivelymultithreaded architecture,” in

Proc. IEEE Int. Parallel Distrib. Process. Symp., 2007,pp. 1–8.

BIOGRAPHIES

Avadhoot K. Katkar Postgraduating student for master degree for information technology in Walchand College

of Engineering, Shivaji University, MH, India. Researching in HighPerformance Computing.

Dr. D.B. Kulkarni Professor of information technology in Walchand College of Engineering, Shivaji

University,MH, India interested in High Performance Computing.

